Gantner Instruments

Condition Monitoring Solutions

Condition Monitoring Solutions Here is what you can find in this presentation

General Overview Page 3
Condition Monitoring Systems Page 7
Controller in Detail Page 17
I/O Modules in Detail Page 22
Vibration Monitoring Essentials Page 34

Expand your engineering, test & measurement, monitoring, instrumentation, and control know-how with Gantner's high-quality and easy-to-use DAQ systems and solutions.

General Overview

Multiple Options – Your Choice

Ready to install into existing Enclosures/Cabinets

Q.series Xtended Edition

- Powerful signal conditioning with flexibility in Interface and form factor for DIN Rail, 19" Rack or portable
- Computer independent data logging,
- Event logger with adjustable pre- post trigger time
- Mix and Match types of I/O Cards as needed
- Vibration monitoring functions according to ISO 10816

Fully engineered solutions

Q.systems CMS

- Powerful and robust signal conditioning with several interface options
- IP54/68 Protection
- Computer independent data logging,
- Event logger with adjustable pre- post trigger time
- Pre-designed inputs and outputs
- Vibration monitoring functions according to ISO 10816

Q.series

Feature Comparison of Q.series X and .systems CMS

Feature	Q.series Xtended Edition	Q.Systems CMS
Sampling rate e.g. of Multi Purpose Module	20kHZ / 100kHz	20kHz / 100kHz
Amount of Input Channels at 20kHz	64	16
Decentralized I/O Modules	(√)	V
Connector on Module Front	Customization possible	BNC, Binder, LEMO
Enclosure	DIN rail, Portable, 19" Rack	Screw / pole mounting
Enclosure rating	IP20	IP54 / IP63
A141 Charge Amplifier	٧	(√)
A108 with excitation for MEMS sensors	٧	٧
IEPE/ICP Inputs	٧	V
Analog outputs (0/4-20mA, +/.10 VDC)	multiple	max. 4
Highest Order of Filter on Module	8 th	6 th
Time synchronization with Ethernet (PTP)	٧	V
 Frequency analysis: Spectral band and broad band analysis for Vibration Velocity Vibration Displacement RMS Max Amplitude @Frequency Time Domain Analysis: 0-pk, pk-pk, rms, avg Crest, Kurtosis 	V	V

Q.series X

Measurement and I/O Modules for all Relevant Signals

Dedicated Modules

- 4 IEPE / ICP
- 4 Piezoelectric sensors
- 8 / 16 strain gage quarter, half and full bridge
- 8 thermocouples, 4 RTD
- 8 voltages or current

Multi Purpose Modules

- 2 or 4 inputs for almost all sensors
- Strain gage module with DC and CF excitation

Digital Modules

- Frequency and PWM in and outputs
- Quadrature and up/down counter
- Specials like missing tooth detection and chronos method

High Isolation Modules

- Isolation 1200 VDC
- Inputs for voltage, current, thermocouples, Pt100, NTC, IEPE, strain gage full and half bridge

Q.systems CMS

Q.systems CMS Q.sens

- 4 Ch Vibration Data Logger
- Inbuild powerfull Q.station with 4 Ch input card for IEPE/ICP or MEMS accelerometers
- Pre-configured for frequency and time domain analysis
- Internal 128 GB data logger
- Power Supply: 10-30 VDC input 110-240 VAC optional
- Digital output and LED for alarm indication
- Ethernet Interface for plant communication
- Multiple interface options like OPC UA, Modbus TCP

Product Highlights

Q.sens pre-configured Comes with optional sensor package

Easy to install

Easy to operate with GI.bench or data streaming to plant's SCADA system

Q.systems CMS Q.cms

- 8, 12 or 16 Ch synchronous vibration channels
 - IEPE or +/-24 VDC sampling rate 100 kHz each channel, bandwidth 20 kHz with anti aliasing filter, 48 kHz optional
 - MEMS (optional)
 - Piezoelcetric / Charge (optional)
- 8 channel for process parameters as
 - 0/4-20mA or 0-10V or RTD (Pt100, Pt1000) individual per channel
 - Sampling rate 100 Hz
- 6 channels for tachometer / Speed sensor / Key Phasor
 - counter, frequency PWM or status
 - 0-30V, Threshold 3.0V as TTL Logic or 11.0V as 24V Logic
- 6 digital outputs for status, alarm, warning
 - 30VDC, 500mA max
 - Relay (optional)
- Analog output optional
- Pre-configured for frequency and time domain analysis according ISO 10816-3
 - Internal 128 GB data logger
 - FFT Line / bins 4096 or 8128
- Robust enclosure IP66 rating
 - Power Supply: 110-240 VAC
 - LED for Status and Power
- Ethernet Interface for plant communication
 - Multiple interface options like OPC UA, Modbus TCP
 - EtherCAT or Profinet optional

Product Highlights

Q.cms pre-configured For vibration monitoring according to ISO 10816-3

Direct asset mounting

Easy to operate with Gl.bench or data streaming to plant's SCADA system

Q.systems CMS Q.series portable

- 12Ch Vibration Data Logger
- Inbuild powerfull Q.station with 12 Ch input card for IEPE/ICP or MEMS accelerometers
- Input for tachometer / Speed sensor / Key Phasor
- Pre-configured for frequency and time domain analysis
- Internal 128 GB data logger
- Power Supply: 10-30 VDC input and 110-240 VAC selectable
- Extendable by additional Q.series I/O modules
- Roughed transport case
- IP54 / IP63 protection
- Ethernet Interface for plant communication
- Multiple interface options like OPC UA, Modbus TCP

Product Highlights

Weatherprooof logger / monitoring Systems

For short or long term monitoring

Battery (external) or grid powered

Q.systems CMS Q.staxx

- I/O extension for Q.cms and Q.series portable
- IP68 protected I/O Module
- For a decentralized system layout

Product Highlights

Very roughed I/O extension

For short sensor cable and best signal quality

Installation directly on the asset (IP68)

Q.systems CMS Q.series customized systems

- Individual designed systems
- With inbuild touch display for plant or process visualization
- Visualization of vibration parameters and warnings / alarms
- All available I/O modules can be used for multiple sensors
- Additional interface to SCADA systems e.g. with OPC UA or Modbus TCP
- Internal data logging with pre- and post trigger

Product Highlights

Designed to your needs and requirements

With inbuild Touch Display for visualization of asset parameters ans status

Q.systems CMS Sensor Package

- Very roughed and industrialized IEPE/ICP accelerometers for stud or magnet mount
- Single axis
 - 80 g dynamic range
 - 100 mV/g
 - Frequency range 0.5 Hz to 14 kHz
 - Hermetically sealed
 - Top or side cable outlet
 - Temperature range -50°C to +120°C (150°C optional)
- Tri-axis
 - 80 g dynamic range
 - 100 mV/g
 - Frequency range 0.5 Hz to 10 kHz
 - Hermetically sealed
 - Side cable outlet
 - Temperature range -50°C to +120°C (150°C optional)

Product Highlights

Very rougehd IEPE/ICP Accelerometer

High Bandwidth

High Temperature Version

Q.systems CMS Gl.bench

- Software for Vibration Trend Monitoring on local Computer or within the network
- Combinend data logging for all connected controllers in addition to local storage
- Visualization with multiples graphic elements
- Multi Screen Applications with web browsers
- Status overview of all connected controllers
- Network security: websocket connection over port 8090 and 8004 only

Q.systems CMS Gl.bench

- Software for Vibration Trend Monitoring on local Computer or within the network
- Combined data logging for all connected controllers in addition to local storage
- Visualization with multiples graphic elements
- Multi Screen Applications with web browsers
- Status overview of all connected controllers

Controller

DAQ Controller Q.station X (B / T)

- For computer independent data logging
- Up to 64 I/O modules connectable
- Destibuted and Daisy Chainned I/O modules or connected directly to the controller
- Multiple sampling rates
- RT linux as operating system for reliable 24/7 operation
- CAN bus port (CAN-FD with external adapter)
- ModbusTCP, Modbus RTU with external adapter (e.g. RS485 to USB)
- 2 USB ports for e.g. GPS mouse
- Time syncronization with NTP, PTP, IRIG
- With test.con (T option),
- Multiple interface options like OPC UA

Click on image to download datasheet

Product Codes

Q.station-XB

Q.station-XT

As bloxx (DIN Rail)

As brixx (portable)

Q.brixx-X station B

Q.brixx-X station T

As raxx (19In Rack)

Q.raxx-X station B

Q.raxx-X station T

DAQ Controller Q.station X (B / T) SSD-1TB

- Q.station standard or T version but with extension with 1TB SSD
- Footprint: Double-slot

Click on image to download datasheet

As bloxx (DIN Rail) Q.station-XB SSD-1TB Q.station-XT SSD-1TB As brixx (portable) Q.brixx-X station B SSD-1TB Q.brixx-X station T SSD-1TB

Product Codes

As raxx (19In Rack) Q.raxx-X station B SSD-1TB Q.raxx-X station T SSD-1TB

DAQ Controller Q.core 101 / 102

- High performance edge controller with GI.bench, inbuild i7 CPU with Q.station Operating system and firmware
- Inbuild 1TB SSD for storage of large data streams from up to 6 Q.stations, extendable by NAS
- Central Data Logger configuration with pre- and post triggering
- Very high data rates up to 96 channel with 100 kHz each from Q.stations (Ethernet) or 10 channels with 4 Mhz from Q.boost (USB)
- Web Frontend for data visualization and export
 - Export as csv, UDBF, MDF, FAMOS,
- Arithmetik stack of GI.bench for evaluation of data sets
- All plugins e.g. OPC-UA available
- Configurable with GI.bench
- 19" (1HU) Rack
- 10 30 VDC Power supply

Also Available: - Without HDMI and USB ports on the front as Q.core 101

Click on image to download datasheet

Product Codes

As raxx (slimline)

HDMI

HDMI

Q.Core 102 w/ USB &

Q.Core 101 w/h USB &

16.03.2021 www.gantner-instruments.com

DAQ Controller Q.station X Touch Screen

- 7 inch industrial touch screen
- 800x480 pixel TFT LCD
- Connectable to Display Port of Q.station
- Design HMI screens with test.con
- Requires 6 slots in a 19" Q.raxx chassis

Product Codes

For rack (19Inch 3HU) or panel mount: Q.screen

Click on image to download datasheet

I/O Modules

System Layout Distributed and Daisy Chained with perfect timing

6

()

I/O Modules Q.series X General Features

- All I/O Modules with 24-bit ADC (A102, A122 with 19-bit SAR)
- Isolation voltage of 500 VDC
 - channel-to-channel
 - channel to power supply
 - channel to bus
- High Voltage I/O modules with 1200 VDC isolation voltage permanent
- Software selectable:
 - Input type
 - Measurement range
 - Scaling and linearization with 300 points (1000+ for RTD)
 - Sensor excitation voltage
- Anti-aliasing filter and further digital filter selectable (High / Low pass, band-pass, Butterworth, Bessel up to 8th order
- Additional virtual variables for signal condition (module dependend):
 - Linearization, filter, average, calcing, min/max storage, rms, arithmetic, alarm

- Multipurpose I/O module with 2 Ch at 100 kS/s each
 - 0-10V
 - 0-60V
 - 0/4-20mA
 - IEPE/ICP
 - Thermocouple
 - Pt100/Pt100
 - Resistance
 - Strain Gage (quarter, half, full)
- 2 Digital Inputs or Outputs
 - Status, trigger,
 - tare, alarm
- Standard 10-pole
- Or LEMO connectors with inbuild sensor excitation (2x 15 VDC, each)
- Also Available: - With Front Connectors 2x DSub9

Accessoires:

- Cold Junction Compensation Terminal: Qterm-CJC-A101
- Bridge Completion Resistor 120 Ohm: Qterm-B4/120-A101
- Bridge Completion Resistor 350 Ohm: Qterm-B4/350-A101

I/O Modules Q.series X A104 TCK

- Thermocouple type input connector Version of A104
 - 8 analog input channels:
 - Thermocouple
 - Type K (others on request)
 - Margin of error e.g. for type K ±0.5 K
 - Voltage
 - ±80 mV
 - Margin of error ±10µV
 - Resolution 10nV
 - 60/50Hz noise reduction filter (10/6 Hz sampling rate)
 - Open thermocouple detection
 - Detect broken wire, loose connection or thermocouple burnout
 - Isolation voltage channel-to-channel 100 VDC
- 8x TCK Miniature Connector with inbuild cold cunction compensation by Pt100

Click on image to download datasheet

- With Front Connectors in Yellow for TCK (ANSI)

Also Available:

- Measurement Module for Temperature (RTD) and Resistance with 4 Ch at 10 kS/s reduced by averaging to available 10 S/s each
 - 4 analog input channels:
 - Pt100
 - Margin of error 0.05 °C
 - Resolution 0.0001 °C
 - Pt1000
 - Resistance 400 Ω / 4000 Ω
 - 3- or 4- wire connection
- Standard 10-pole screw terminals

Click on image to download datasheet

Also Available:

- With Front Connectors 2x DSub15 and 2x BNC
- With Front Connectors 4x Dsub15

- Universal Measurement Module with 4 Ch at 20 kS/s each
 - 4 Universal analog input channels:
 - Voltage with input range ±10 V, ±1 V and ±100 mV
 - Current with input range ±25 mA
 - Potentiometer with input range 1 kOhm to 10 kOhm
 - Resistance with input range 400 Ohm and 4 kOhm
 - RDT (Pt100 / Pt1000)
 - Thermocouple
 - Strain Gage with input range ±2.5 mV/V, ±50 mV/V and ±500 mV/V
- Standard 10-pole screw terminals
- Or LEMO connectors with inbuild sensor excitation (4x 15 VDC, 20 mA each)

Also Available:

- With Front Connectors 4x DSub9

Accessoires:

- Cold Junction Compensation Terminal: Qterm-CJC-A107
- Bridge Completion Resistor 120 Ohm: Qterm-B4/120-A107
- Bridge Completion Resistor 350 Ohm: Qterm-B4/350-A107

- Voltage and Current Measurement Module with 8 Ch at 20 kS/s each
 - 8 analog input channels:
 - Voltage differential
 - Input range ±10 VDC
 - Margin of error ±2 mV
 - Resolution 1.5 μV
 - Overvoltage protection ±200 V
 - Current (with shunt resistor)
 - 2 Digital inputs and outputs
 - Status, Trigger, Tare, Alarm
- Standard 10-pole screw terminals

Also Available:

- With Front Connectors 8x BNC as double slot module

Accessoires:

- Shunt Terminal for Current Measurement (0/4-20mA): Qterm-

Click on image to download datasheet

I/O Modules Q.series X A108 4M1 / 2M3

- 2M3: I/O Module for 2 tri-axis MEMS sensors
 - 6+2 Analog Input channels with 20 kS/s each
 - Al1, Al2, Al3 differential/ single-ended switchable in groups
 - AI5, AI6, AI7 differential/ single-ended switchable in groups
 - AI4, AI8 single-ended (e.g. for temperature compensation)
- 4M1: I/O Module for 4 single-axis MEMS sensors
 - 4+4 Analog Input channels with 20 kS/s each
 - Al1, Al2, Al3, Al4 differential/ single-ended switchable in groups
 - AI5, AI6, AI7, AI8 single-ended (e.g. for temperature compensation)
- All analog inputs:
 - Input range ±10 VDC
 - Margin of error ± 2 mV
 - Resolution 1.5 μV
- Sensor excitation for each sensor
 - 15 V max. 40 mA (short circuit proof)
- Available in 2M3 (DB9) and 4M1 (MicroCom CMR)

- Analog Output Module with Digital I/Os
 - 4 analog output channels:
 - Voltage ±10 VDC
 - Current 0-20 mA
 - 4 Digital inputs and outputs
 - 2 counter / 2 frequency
 - 2 PWM Inputs / 4 frequency out
 - 4 PWM output
 - 4 state outputs
- Standard 10-pole screw terminals

Click on image to download datasheet

Also Available:

- With Front Connectors 4x BNC (analog output only)

I/O Modules Q.series X A111 / A111 BNC

- Module for IEPE/ICP Sensors and Voltages with 4 Ch at 100 kS/s each
 - 4 galvanic isolated analog input channels:
 - IEPE
 - Input range ±1 V or ± 10 V
 - margin of error ±1 mV / ±10 mV
 - Sensor excitation with 4mA constant current
 - Compliance voltage 24 VDC ±10 %
 - Input frequency range 0.5 Hz to 20 kHz
 - Voltage
 - Input range ±100 mV, ±1 V or ± 10 V
 - margin of error ±20 μV / ±200 μV / ±2 mV
- Standard 10-pole screw terminals or BNC-Connectors

- Charge Amplifier Module for Piezoelectrical Sensors
- Engineerd with Kistler
- 4 channels Charge Amplifier:
 - For Piezoelectric Sensor
 - Input Range: 1000 to 1000000 pC
 - Margin of error < ±1 % FSO
 - Drift 0.5 pCpp
 - Frequency range 0 Hz to 20 kHz
- 4x BCN Connector

Click on image to download datasheet

Vibration Monitoring Essentials Selection of Data Evaluation Functions

Gantner Instruments Austria | Germany | France | Sweden India | USA | China | Singapore

Typical Application Electric Pump

- Standard pumping System with electric motor
- Two Motor bearings and two pump bearings (all roller bearings)
- Minimum Setup:
 - 8 Accelerometers x/y on motor shaft and pump bearings, x on motor Fan, z on end of pump shaft
- Advanced Setup
 - Rotor speed
 - Electrical parameters of motor (U, I, Power, ...)
 - Process parameters (Temp, pressure, flow, ...)
 - two proximity probes if plain bearings (large pumps)

Typical Application Electric Pump

• What is measured and analyzed

	Process signals	Vibration signals	Voltage and current signals
Monitoring parameters (online extracted and monitored partly within the Q.Station)	 Speed, Power, Mass flow, Pressure, Temperature, 	 RMS: Overall, LF, ISO, HF (energy) Peak: Peak-to-peak, Max-Min (amplitude) Crest: Peak/RMS (impacting) Kurtosis (peakiness) Smax (max displacement) Harmonics (1X, 2X, NX) Speed / Keyphasor (Position, angle) 	 Effective voltage Ueff Effective current Ieff Impedance Z Effective power Peff Reactive power Seff Power factor Cosphi Total effective power Mechanical power Torque Motor load Voltage deviation Voltage asymmetry
Diagnostic parameters (offline extracted as diagnostic features within GI.bench / GI.cloud)	 Operating mode or load condition 	 Order Tracking Torsional Vibration Stiffness analysis 	 Supply frequency Synchronous frequency Slip frequency Pole pass frequency Slot pass frequency Static eccentricity Dynamic eccentricity Stator mechanical damage Rotor defect

Vibration Monitoring Essentials Selection of Data Evaluation Functions

Gantner Instruments point of view on Vibration Monitoring

- Objective is a robust and industrialized DAQ (data Acquisition) hardware and a sufficient package on data evaluation capabilities for trend monitoring, alarm indication and raw data storage for detailed data analysis.
- We do not provide a software suite with hundreds of analytic functions; we focus on the most essential ones taking into account the above-mentioned objectives.
- We provide an online operating data evaluation package working on the DAQ controller and features for offline and online data evaluation in addition.
- We can customize I/O-Module Firmware and Software for Desktop and Cloud in case special evaluation functions are missing
- We do not charge high prices for software license and annual fees; we provide a working platform paid once only.
- It is still an engineering system with sometimes less comfort in configuration but provides the full flexibility for the experienced user. As a service we provide system setup as well as turnkey design of monitoring systems.

Vibration Parameter

Vibration Parameters

Gantner

- Statistics in Time Domain
 - RMS (arithmetic function *TrueRMS*),
 - [Peak or Envelope upper/lower (aritmethic function Min, Max)],
 - Peak-to-Peak (p-p) or Envelope (arithmetic function Max-Min),
 - Envelope (test.con function envelope)
 - Average (Avg) (arithmetic function Averaging)
 - Crest as and indicator for impacting (crest= peak/rms)
 - Kurtosis as an indicator for peakiness (arithmetic function *Statistics, Type 4*)
- These parameters can be calculated based on
 - the acceleration signal in g or m/s^2
 - the vibration velocity signal in mm/s (derived on integration of the raw acceleration signal)

Vibration Parameters

- In Frequency Domain
- On Q.station with FFTProcessor and FFTEvaluator
 - Note: we calculate the spectrum based on peak or peak-to-peak, rms not yet available)
 - RMS (overall single value for the selected spectrum)
 - Max Amplitude@Frequency
 - Vibration velocity (overall)
 - Vibration displacement (overall)
- In Wide band FFT or Spectral Bands
 - For each spectral band analysis the FFT Evaluator must be configured

Controll	er settings				×
Con	troller #1: "XSstation	n_Accelero"			Q
Ľ	General	Stream processor	DataBuffer20kHz	•	
æ.	Network	Variable	►MEMS1X	•	
ŧ	Settings	FFT size type	Constant	Ŧ	
B	Watchdog	Value	8k	•	
Ð	Synchronization	Window type	Constant	•	
	Dataport	Value	Hanning	•	
æ.	Fieldbus	Window param. type	Constant	• •	
(iii)	FTP clients	Ruffer overlag	Constant	-	
\oplus	SNTP	Value	0	*	i
ð	Net drives	Generate files	Constant	•	
Ŷ	USB Devices		Value Value		
0	Email	Signal calc. type	Constant	Ŧ	
$f^{(\mathbf{x})}$	Functions	Value	Peak	•	
	FFT #1	Evaluator count	1		i
		Type.1	Constant	•	
		Value.1	EVV - (E)ffective (V)ibration (V)elocity	•	
		Start frequency.1	Constant	•	
		Value.1	0	Hz	
		Stop frequency.1	Constant	•	_
		Value.1	2000	Hz	
		Result variable 1.1	MEMS1XVibVelo	•	
	Flat			0	ок

Vibration Parameters

- In Frequency Domain
- On GI.bench for visualization by FFTChart
 - Raw acceleration [g]
 - Vibration Velocity (raw accelerations signal in [m/s²] integrated and filtered in enhanced stream)
 - Vibration Displacement (raw accelerations signal in [m/s²] double integrated and filtered in enhanced stream)

NOTE:

- it is an autopower spectral plot and NOT a spectrum as we do not have any phase information.
- We do not have a Power Spectral Density (PSD) plot.
- In Wide band FFT or Spectral Bands
 - For each spectral band analysis a new FFT Chart can be used with a x-axis scaling according to the band spectra

hart Settings	_						_						
Depth 😧	Border	Opacity											
Automatic *	On 🔻	100 ‡											
Zoom Type	Zoom Warning	Data Smoother	ning Data	Request A	mount Cursors								
X-Axis *	Ignore *	Smooth	▼ Full		* Sliders	*							
X-Axis GridMode	Y-Axis Scale	Y-Axis Format	Lege	nd	Legend Form	nat							
Automatic *	Linear	▼ Raw	▼ Rigt	nt	* Raw	*							
S FFT Settings													
Data Points	Window Typ	e Win	dow Params		Create Data	X-	Axis View						
						1	Manual			*			
32 768 - (2^15)	▼ Hanning	▼ 0.0		*	No	× ()		÷	Min			
						Ę	500		+	Max			
CSV Export Setting	as												
Header	-	Columns	Times	tamp Hea	der Time Format		Column Se	eparator	Decim	ial Separ	ator		
		Variable Names	▼ Time	stamp	OLE2Time	Ŧ	ŀα						
Y-Axis Na	ame	Position		Scale				Varia	bles				
					Syst	emDataStre	eam 🔻	MEMSI	Х		*	×	
		Loft ¥	Automat	ir.	Syst	emDataStre	eam 🔻	MEMS	ΙY		*	×	
		Len	Automat	IL.	Syst	emDataStre	eam 🔻	MEMS	Z		*	×	î
						dd Mariak							

Gantner

Vibration Paramters

Gantner

- Smax for plain bearings
- Measured by two (or more) proximity probes at a 90 degree angle to each other
- Plotted on a XY-chart it shows the orbit
- The Smax value is the maximum displacement (peak) of the shaft in the bearing and is calculate by vector multiplication of two or more sensor signals

 Information: The Keyphasor (brand name of GE Bentley Nevada) signal is a once-per-turn voltage pulse provided by a transducer (normally an eddy current proximity measurement system).

Orbit

Vibration Paramters

- Smax for plain bearings
- Examples of different orbits

Coming Soon

Gantner

- Order Tracking / Order Analysis / Tracking Filter: technique for analyzing vibration signals in rotating machinery (pumps, turbines, compressors). These machines have several parts parts each of which contributes unique vibration patterns to those of the whole machine. With order analysis these patterns can be visualized to identify individual parts.
- In general possible with two methods:
 - Fixed sampling (fixed data rate e.g. 10kHz)
 - Syncronous sampling (data rate proportional to speed)
- With the X-series we use fixed sampling with the advantage that resonances can be seen clearly e.g. in a heatmap.
- Important:
 - the Fourier Transform requires a fixed time frame of data. During the fixed time frame, the speed of the rotating system changes. As the speed changes, the frequency of the order content also changes. This is referred as "smearing" effect or "leakage".
 - That can be avoided when sampling rate is high enough and number of bins small in relation to the required resolution

Fixed versus Synchronous Sampling on Same Speed Sweep 0.125 second Fixed Sampling Frame, 0.125 Order Tracking Resolution

What is an order?

• This shaft spins with 600 rpm

- 600 rpm = 10 rotation per second = 10Hz
- The frequency of the rotation is 10 Hz

Gantner

What is an order?

- This shaft is now inthe run-up
 - 3300 rpm = 55 rotation per second = 55Hz
 - The frequency of the rotation is 55 Hz

- 6000 rpm = 100 rotation per second = 100Hz
- The frequency of the rotation is 100 Hz

What is an order?

- Plot the three measurements in a 3D chart Amplitude vs.
 Frequency vs. RPM
- This is the order data over three points for the shaft
- If amplitudes are tracked at small rpm increments along the sweep we call it 1st order

Gantner

- Order Cut
 - Visualization of the amplitudes from one order in a 2D Chart

- Commonly used display for order analysis
 - 3D Chart / Waterfall Plot
 - Each one of the lines along the frequency axis is an individual FFT that was taken at a specific RPM increment. Stacked together they create the waterfall graph

- Commonly used display for order analysis
 - Heatmap/ Color Map
 - The amplitude is represented by the color intensity. The darker/cooler colors are lower amplitude while the warmer/brighter colors are higher amplitude.
 - Key things to identify on the colormap/waterfall include resonant frequencies and order lines. The order lines are the diagonal lines coming from the origin on the map. The resonant frequencies are the high amplitude lines that extend vertically from the frequency axis.

Torsional Vibration

Coming Soon

16.03.2021 www.gantner-instruments.com

Torsional Vibration

- We distinguish between two types:
- Rotational Vibration
 - Fluctuation in rotational velocity (Difference in angular velocity) during one turn or during run-up and coast down measured with **one** tacho sensor or encoder on a toothed wheel.

- Torsional Vibration also known as torsional twist or twist angle, twist rpm
 - Oscillation of angular motions. The rotating shaft rotates on different phase or angular position on both ends. The result is a mechanical torsion of the shaft.
 With two encoders the angular difference on both sides of the shaft is measured.

Torsional Vibration

- We distinguish between two types:
- Rotational Vibration
 - Fluctuation in rotational velocity (Difference in angular velocity) during one turn or during run-up and coast down measured with **one** tacho sensor or encoder on a toothed wheel.

• The tacho / encoder generates a signal for each passed teeth. The time difference between the pulses is the angular velocity

Configuration Guide for Gl.bench

Statistics in time domain – rms

- On I/O Module as arithmetic variable
 - Formula ? Select RMS value (Value; Timebase [s])
 - Value = Input channel on module
 - Timebase = calculation rate of rms
 - Example: A111 with 100kHz per channel sampling rate use 100,000 samples for rms calculation if timebase 1 second is used. The calculated rms value is actualized every second in this example.
 - NOTE: This arithmetic variable needs to be transferred over the UART to the Q.station. In case there is no cycle time on the UART available to transfer the additional arithmetic variable. Use rms arithmetic on virtual variable on Q.station.

Variable se	ettings						×
Variab	le #22: "IEPE	1Xrms"			P	◄	►
	General		SelectRMS(Var("IEPE1X");1)				
I	Formula	Formula text			Apply		
:	Scaling	System variables		T	Set at cursor		
I	Format	Available variables	IEPE1X	•	Set at cursor		
		Functions	SelectRMS	•	Set at cursor	i	
			Integrator Max Min SelectRMS Special1 Special2 Special3 Special4 Var 0 ; -	g			
	Flat				0	к	

Statistics in time domain – rms

• On Q.station as arithmetic variable

 Formula
 True RMS value (Value[; Type;] AddParam) Value Type:

 [if not present] AddParam = TimeConstTau [s]
 ... Lowpass AddParam = TimeConstTau [s]
 1... Sliding AddParam = Count (1...9999)
 2... Arithmetic mean AddParam = Count (1...9999)

- Value = Input channel on module
- Type = select type of rms calculation 0 and [if not present] is equal
- TimeConstTau = time constant for lowpass filter
 - Calculation of rms
 - Factor=TimeConstTau / CPU Calculation Time
 - Rms=sqrt(NewValue x NewValue + CollectedValue x (Factor-1)) / Factor

Variable	settings								×
Varia	ble #17: "ME	MS1Yrms"					٩	◄	►
	General		TrueRMS(Var("ME	EMS1Y");0.1)					
	Formula	Formula text				An	plv		
	Scaling	System variables	Cycle counter		•	Set at	cursor	-	
	Event	Available variables	DigitalIn1	(AccInd=2)	•	Set at	cursor		
	Format	Functions	TrueRMS		•	Set at	cursor		
			Sin Special0 Special1 Special2 Special3 Special4 Special5 Special6 Special7 Special8 Special9 Sqr Sqrt State State Statistics StdDeviation SystemControl			De Rg LП			
	Flat		Tan TrueRMS				(ж	

Statistics in time domain – rms

• On Q.station as arithmetic variable

 Formula
 True RMS value (Value[; Type;] AddParam) Value Type:

 [if not present] AddParam = TimeConstTau [s]
 ... Lowpass AddParam = TimeConstTau [s]
 1... Sliding AddParam = Count (1...9999)
 2... Arithmetic mean AddParam = Count (1...9999)

• Differences between Types

Statistics in time domain – **peak / envelope, Average**

- On Q.station as arithmetic variable
 - Formula ? Max. hold value (Value)
 - Value = Input channel on module
 - Needs reset function, otherwise it is peak hold forever
 - Select Reset on host or on variable.
 - On host: reset is performed with the CPU calculation rate. CPU Calculation rate 1 kHz, sampling rate 10 kHz means max value over 10 samples.
 - On variable: define any condition the reset the max hold e.g. by time in seconds, or on digital I/O.
 - Same applies for Min.
 - For peak-to-peak calculation use additional arithmetic function Max-Min

```
    Formula
    Averaging value (Value; Type[; AddParam])
Value
Type:

            0 ... Lowpass
AddParam = -3dB edge frequency
            1 ... Sliding
AddParam = Buffer depth
            2 ... Event driven
            3 ... North step
            4 ... Arithmetic mean
AddParam = Weighting number
```

			,	Variable settings				×
Varia	able #20: "ME	MS1Yrms-MEAN"				٩	•	►
1	General Formula			Reset on host Reset on variable				
	Scaling							
	Reset							
	Format							
	Flat					01	(

Statistics in time domain – **peak / envelope, Average**

- On Q.station or GI.bench Project level as enhanced stream
 - Formula is generated automatically by the enhanced stream.
 - Right click on Controller and choose *Add enhanced data stream* and select databuffer and channels in the data processor settings. The stream will be generated.
 - Right click on the new stream and choose *Add statistical variable* and select the parameters to be calculated
 - For Envelope choose minimum and maximum

OK

Statistics in time domain – **peak / envelope, Average**

- On Q.station or GI.bench Project level as enhanced stream
 - The reset parameter is set automatically to Reset on handling interval.
 - For statistical application choose 1 min or 1h as *Rate*. That defines the handling interval.
 - The used number of samples for Max, Min or Avg is equal to the source rate. If the source is rate is 20 kHz and Rate is set to 1 Minute, then 20,000 samples/s x 60 s = 1,2 Mio Samples are used.
 - For visualizing the envelope choose a rate e.g. 100 times lower the source rate.

Tipp:

If the desired *Rate* is not available and you cannot change the source rate, use the *Prescaled source rate* parameter in the Enhanced settings. With this parameter the source rate is devided and more slower Rates become available. Keep in mind that the prescaler is not an averaging, it just choose every n sample, with n equal to prescaled source rate.

60

Gantner

Statistics in time domain – peak / envelope, Average

- On Q.station or GI.bench Project level as enhanced stream
 - For visualizing the envelope choose a rate e.g. 20-50 times lower the source rate.
 - The Yt-Chart on top shows the Envelope with 2kHz, the bottom Envelope (Min) is the red, the top Envelope (Max) is the blue curve and in light green is the raw signal sampled with 20 kHz

• The Yt-Chart on the bottom shows the same values but the Envelope (Min/Max) is computed with 800 Hz only

Note:

The minimum and maximum function used here as an envelope is not 100% correct. In the curves you see the delay in peaks, caused by the lower sampling rate for these values

Statistics in time domain – crest

• On Q.station as arithmetic variable

- Formula: crest = peak / rms
- Calculate rms and peak with arithmetic function first, then define a new arithmetic variable for the crest factor
- Formula: Var("MEMS1Ypeak")/Var("MEMS1Yrms")
- Crest factor indicates how extreme the peaks are in the time series signal. It is sometimes called peak-to-rms ratio. Crest factors of two or 3 are normal and begin to increase when the signal contains more, and higher peaks.

			Varia	ıble setti	ngs							×
Varia	ble #19: "ME	MS1Ycrest"								Q	◄	
	General		Var("MEľ	MS1Ypea	k")/Var('	"MEMS1Y	′rms")					
	Formula	Formula text							Appl			
	Scaling	System variables	Cycle c	ounter				•	Set at cu	y Jrsor		
	Event	Available variables	A106-2	(AccIn	d=46)			▼	Set at cu	ursor		
	Format	Functions	Abs					▼	Set at cu	ursor	i	
			7	8	9	/	(AND	е			
			4	5	6	*)	SHR	g			
			1	2	3	+	%	SHL	п			
			0		;	-	OR	XOR				
	Flat									0	x	
	That									- 0	N.	

Gantner

instruments

Statistics in time domain – Kurtosis

- On Q.station as arithmetic variable
 - Formula
 - Kurtosis can be used to differentiate between similar types of vibration signals and indicates the 'spikiness'.
 - Kurtosis *k* is a unitless parameter that quantifies the distribution shape of a signal relative to a Gaussian distribution.

$$k = \frac{n \sum_{i=1}^{n} (x_i - \bar{x})^4}{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right)^2} - 3$$

- The current data point minus the mean, divided by the standard deviation, to the fourth power, and normalized by the number of data points is the Kurtosis. If the result is then subtracted by 3 to ensure the kurtosis of a Gaussian distribution is equal to zero we call it Kurtosis excess.
- Vibration signals can have high Kurtosis numbers e.g. 80 or 120. It is often used in vibration control in combination with a shaker.

			Varia	ble setti	ngs							×
Varia	ble #19: "ME	MS1YKurtosis"								P	◄	
Y	General		Statistics	((Var("M	IEMS1Y")	4;0))						
	Formula	Formula text							Appl	v	A	i
	Scaling	System variables	Cycle c	ounter				•	Set at c	, Jirsor	_	_
	Reset	Available variables	A106-2	(AccIn	d=46)			•	Set at c	JISOL		
	Format	Functions	Abs					•	Set at c	ursor	i	
			7	8	9	/	(AND	е			
			4	5	6	*)	SHR	g			
			1	2	3	+	%	SHL	п			
			0		;	-	OR	XOR				
	Flat									0	К	

Gantner

Parameters in frequency domain – FFT Fundamentals

Windows and Leakage

FFT spectra shows amplitudes according to the set frequency resolution. Frequencies with are not integer multiples of the resolution will leak from over the complete frequency range.

A signal with leakage has lower amplitude and a broader frequency response than a signal with no leakage. This makes it difficult to quantify the signal properly in the frequency domain.

To avoid those leakages, apply a window before processing the FFT:

Hanning Window is used for general data evaluation for random transients and has a good mix between frequency and amplitude accuracy.

Gantner

Parameters in frequency domain – FFT Fundamentals

Key Terms

Sampling Rate F_s : Number of acquired samples per second Frame Size F: Amount of time data collected for FFT Block Size B: Total number of data samples acquired during frame Bandwidth F_{max} : Highest Frequency that is captured by FFT, Must be maximal half of F_s .

Spectral Lines *SL*: total number of frequency domain samples, number of bins Frequency Resolution *df*: spacing between frequency domain samples, bin frequency

The frame size *F* indicates the time to compute the FFT. When the block *B* has a size of 2000 samples and the sampling rate F_s is 1 kHz, it takes 2 seconds to get the 2000 samples.

The number of spectral lines *SL* is half the block size *B* because the FFT results in amplitude and phase. If converted to an auto-power it eliminates the phase.

The frequency resolution df equals the bandwidth divided by the spectral lines or sampling frequency divided by block size.

 \rightarrow The finer the resolution, the longer the acquisition time

$$F = B / F_S$$

 $SL = 0.5 \times B$

$$df = F_S / B$$

FFT Processor & Evaluator on Q.station

Signal evaluation in frequency domain is done by the Controller Q.station with an FFT Processor to convert the timeseries signal into the frequency domain.

NOTE: Auto-power is used here and not the spectrum (phase information is not available).

With several FFT Evaluator functions the auto-power spectral band can be evaluated.

NOTE: the FFT Evaluator gives a single value as result. E.g. when using effective vibration velocity it returns the value over the selected spectral band and does not provide a new auto-power spectra.

For FFT processor and FFT Evaluator configuration, double click on the Controller Q.station to open the setting window and choose *Functions*.

					Controller settings		×
FFT Processor		Cont	roller #1: "XStation_	Accelero"			Q
For FFT processor	Data Buffer defines Sampling Rate F _s		General		DataBuffer20kHz	•	
and FFT Evaluator	Input Variable (Sensor)	 .	Network	Variable	► MEMS1Y	•	
configuration,		÷	Settings	FFT size type	Constant	•	
double click on the	Block Size B (1kSample to	 B	Watchdog	Value	8k	•	
Controller Q.station	1MegaSample)	Ð	Synchronization	Window type	Constant	•	
to open the setting			Dataport	Value	Hanning	•	
window and		5	Fieldbus	Window param. type	Constant	•	
choose <i>Functions</i> .		(m) AP	FTP clients	Value	None	•	
	Overlapping of Block Size for each FFT	\oplus	SNTP	Buffer overlap	Constant	•	
	computation in %	đ	Net drives	Generate files	Constant		- 1
		¥	USB Devices		Value		
		0	Email	Signal calc. type	Constant	•	
	Time domain data as peak or peak-to-	 <u>f(x)</u>	Functions	► Value	Peak	•	
	peak (mishot yet available)		FFT #1	Evaluator count	2		
	Activation of FFT Evaluator, up to 10 can be used on the same Input Variable		Flat				ок

Controller settings

×

Possible Evaluator Functions

FFTErrorStates	Cont	roller #1: "XStation_	_Accelero"				Q
Minimum Maximum		General	Evaluator count	2			
Integral RMS - (R)oot (M)ean (S)quare SIMD - (S)ignal to (D)starforance ratio including (N)oice (A)nd (D)istartion	æ.	Network	Evaluator counc	2			
ENOB - (E)ffective (N)umber (O)f (B)its SNR - (S)ignal to (N)oise (R)atio	 ÷	Settings	Type.1 Value.1	Constant EVV - (E)ffective (V)ibration (V)elocity	•		
THD - (T)otal (H)armonic (D)istortion SFDR - (S)purious (F)ree (D)ynamic (R)ange	B	Watchdog	Start frequency.1	Constant	•		
EVV - (E)ffective (V)ibration (V)elocity EVD - (E)ffective (V)ibration (D)isplacement	Ð	Synchronization	Value.1	0	Hz		
TimeDomainBurrerLossiessAndOvenappingHealth		Dataport	Stop frequency.1	Constant	•		
Defines the Bandwidth <i>F_{max}</i>	523	Fieldbus	Value.1	1000	Hz	i.	
Variable used for the FFT result	 <u> </u>	FTP clients	Result variable 1.1	MEMS1YVibVelo	•	i	
Note: define the resutlt varibale bevor	\bigcirc	SNTP	Type.2	Constant	•		
configuring the FFT	6	Net drives	Value.2	RMS - (R)oot (M)ean (S)quare	•		
	Ŷ	USB Devices	Start frequency.2	Constant	•		
Start and Stop Frequency defines the	0	Email	Value.2	0	HZ		
spectral band the rms is calculated for	 $f^{(\mathbf{x})}$	Functions	Stop frequency.2	Loostant	Hz		
		FFT #1	Result variable 1.2	MEMS1YrmsFFT	•		
		Flat				ок	

FFT Evaluator

	Type.1	Constant	▼
FFT Evaluator	Value.1	EVV - (E)ffective (V)ibration (V)elocity	y 🔻
Get information by pressing the blue info boy:	Start frequency.1	Constant	
det mormation by pressing the blue into box.	Value.1	1000	Hz
	Stop frequency.1	Constant	▼
	Value.1	5000	Hz
Bandwidth – frequency resolution	Result variable 1.1	MEMS1YVibVelo	Valid range of [Value.1]: 1000 9995 Hz
Frequency Resolution df	Type.2	Constant	HINT: * Bin frequency: 4.88281 Hz
	Value.2	RMS - (R)oot (M)ean (S)quare	* Rounded bin frequency: 5 Hz * Nyquist frequency: 10000 Hz
In this example the Sampling Rate F_c is 20 kHz and the block	Start frequency.2	Constant	
size B is 4 kSample. In reality the block size is always multiples	Value.2	0	Hz
of power 2 and in this case exactly 4096 samples. The	Stop frequency.2	Constant	•
Frequency resolution $df = F_s / B$ is 20,000 Sample/s / 4096 Sample = 4.88281 1/s = 4.88281 Hz			or

Enhanced Streams Configuration with Gl.bench

Enhanced Streams

Using enhanced stream for signal integration, to calculate velocity and displacement

- Right click on Controller and choose *Add enhanced data stream* and select databuffer and channels in the data processor settings. The stream will be generated.
- Right click on the new stream and choose *Add variable* and select the parameters to be calculated
- Configure this variable and use arithmetic function Integrator
- Set physical unit in *Scaling* to *mm/s*

Enhanced Streams Configuration with GI.bench

Enhanced Streams

Using enhanced stream for signal integration, to calculate velocity and displacement

- Set a high-pass or bandpass filter to eliminate the DC content in the signal (that accumulates an error in the integration process)
- Choose 1Hz or 0.5Hz as filter frequency if you use High-pass
- You can derive the vibration displacement out of this variable by making a new arithmetic function and choose the velocity channel and integrate and filter again.

			Variable settings				×	
Varia	able #8: "VibVelo"				P	◄	►	
	General	Calculation type	Advanced		•			
	Formula	Туре	High-pass		•			
	Scaling		Bessel	el				
	Filter/Averaging		4th order		▼			
		3dB Frequency Point 1	1		Hz	i		
	Event							
	Format							
	Flat				(ж		

Summary: where parameters can be configured

On Project level / local computer				
Statistic parameter Min, Max, Avg,	⊡ Project "a	cceleration_Demo with mechanics" @m	yCom	
Arithmetik Variable Kurtosis, Crest-Factor, rms				
		m streams		
Integration and Filter for vibration velocity, vibration displacement	⊕… Enhan	nced streams		
On Q.station level		ogging		
Statistic parameter Min, Max, Avg,	∎] ■ ★ Q.	station-XT	VibrationDemo	
Arithmetik Variable Kurtosis, Crest-Factor, rms	ěi t			
Integration and Filter for vibration velocity, vibration displacement	uter sa ter ter ter	imple rates ihanced streams		
	tin Da	ata logging		
FFIProcessor and FFIEvaluator	بالله الم	rstem variables		
 Control of digital/analog ouputs e.g. for alarming 	₽… Ph	ysical variables		
	÷ Vir	tual variables		
	C/	AN #1		
		6485 #1 (DataBuffer 100Hz)		
On I/O-Module level		····Q.series-XL A111 BNC	User	
Statistic parameter Min. Max	0			
		V1	IEPE 1X	Analog input
Arithmetik Variable <i>rms</i>		····· V2	IEPE 1Xrms	Arithmetic
Signal Filtering		V3	IEPE 1Y	Analog input
		V4	IEPE 1Z	Analog input
		V5	AlarmThreshold	Anaiog input Setopint
		V7	AlarmRMS	Alarm
16.03.2021 www.gantner-instruments.com			· • • • • • • • • • • •	72

Accelerometer Signal Conditioning

A111 A108+

A141

MEMS, 4/6 Ch

A141

Piezo, 4 Ch

IEPE, 4 Ch

IEPE (PiezoStar, Piezotron, DeltaTron, ICP[®], ISOTRON[®]) (Integrated <u>Electronics PiezoElectric</u>)

- Sensor contains internal charge to voltage converter
- Standard cable for sensor connection
- DAQ system with integrated IEPE power supply (e.g. 4mA const.) required for operation
- Only dynamic measurements possible
- Measuring range is fixed
- Temperature range limited with integrated electronics

MEMS (K-Beam) (<u>M</u>icro <u>E</u>lectro <u>M</u>echanical <u>S</u>ystem)

- Sensor contains internal charge to voltage converter
- Standard cable for sensor connection
- DAQ system with integrated power supply (e.g. 10-30V unregulated) required for operation
- Quasi-static (DC) measurements possible
- Measuring range is fixed
- Temperature range limited with integrated electronics

(<u>P</u>iezo<u>E</u>lectric)

PE

- Sensor does not contain electronics
- Very wide temperature range
- Very broad measuring range
- Quasi-static up to very dynamic measurements possible
- High impedance cable required
- Charge amplifier required

I/O Modules Q.series XL/XE A108 4M1 / 2M3

- 2M3: I/O Module for 2 tri-axis MEMS sensors
 - 6+2 Analog Input channels with 20 kS/s each
 - AI1, AI2, AI3 differential/ single-ended switchable in groups
 - AI5, AI6, AI7 differential/ single-ended switchable in groups
 - AI4, AI8 single-ended (e.g. for temperature compensation)
- 4M1: I/O Module for 4 single-axis MEMS sensors
 - 4+4 Analog Input channels with 20 kS/s each
 - Al1, Al2, Al3, Al4 differential/ single-ended switchable in groups
 - AI5, AI6, AI7, AI8 single-ended (e.g. for temperature compensation)
- All analog inputs:
 - Input range ±10 VDC
 - Margin of error ± 2 mV
 - Resolution 1.5 μV
- Sensor excitation for each sensor
 - 15 V max. 40 mA (short circuit proof)
- Available in 2M3 (DB9) and 4M1 (MicroCom CMR)

I/O Modules Q.series XL/XE A111 / A111 BNC

- Module for IEPE/ICP Sensors and Voltages with 4 Ch at 100 kS/s each
 - 4 galvanic isolated analog input channels:
 - IEPE
 - Input range ±1 V or ± 10 V
 - margin of error ±1 mV / ±10 mV
 - Sensor excitation with 4mA constant current
 - Compliance voltage 24 VDC ±10 %
 - Input frequency range 0.5 Hz to 20 kHz
 - Voltage
 - Input range ±100 mV, ±1 V or ± 10 V
 - margin of error ±20 μV / ±200 μV / ±2 mV
- Standard 10-pole screw terminals or BNC-Connectors

I/O Modules Q.series X A141

- Charge Amplifier Module for Piezoelectrical Sensors
- Engineered with Kistler
- 4 channel Charge Amplifier:
 - For Piezoelectric Sensor
 - Input Range: 1000 to 1000000 pC
 - Margin of error < ±1 % FSO
 - Drift 0.5 pCpp
 - Frequency range 0 Hz to 20 kHz
- 4x BCN Connector

Click on image to download datasheet

I/O Modules Q.series X A141 – Measurement Modes

۹ 🕨

10

- Fast transient (typ. <500ms) or pulsating signals (typ. >0.5Hz)
 - → <u>Time constant (measuring mode «short»)</u>
 - Integrated time constant filters any DC content
 - No drift due to High-Pass characteristic
 - No Reset/Measure required, continuous measurement

- Slow down to almost static measurements
 - → <u>Standard (measuring mode «long»)</u>
 - For Low Frequency and Dynamic measurements
 - Reset/Measure signal required = «start measurement»
 - Drift become visible after long time

Gantner

instruments

Scaling Type Analog input Value handling Sensor/Actor Charge Filter/Averaging Tare / Zero / Reset Sandard Format Connection image Sample rate Sample rate DataBuffer20kHz Tate

Name PiezoElectric

Variable #29: "PiezoElectric1"

I/O Modules Q.series X A141 – Measurement Modes

• In measurement mode standard RESET / MEASURE Signals must be set to A141 inputs

 Select Tare / Zero / Reset page and activate at least "Reset charge amplifier on variable"

Gantner

Variable settings					
Variable #29: "PiezoElectric1"			Q	◄	►
	General	Tare on host			
	Scaling	Tare on variable			
	Value handling	Tare save non-volatile			
	Filter/Averaging	Zero on host			
	Tare / Zero / Reset	Zero on variable			
	Format	Reset charge amplifier on host			
		Reset charge amplifier on variable			
		Variable ResetA141	•		
	Flat		01	ç	

I/O Modules

Q.series X A141 – Measurement Modes

- In measurement mode standard RESET / MEASURE Signals must be set to A141 inputs e.g via setpoint variables
- When the signal is drifting, send bitset starting from Bit 8 (256) to RESET the input, channel LED is flashing light blue:

ightarrow bitset 272 resets Channel 1

- 256 (Bit 8) + 16 (Bit 4) for ch 1,
- ightarrow bitset 528 resets Channel 2
 - 512 (Bit 8) + 16 (Bit 4) for ch 2
- Set to MEASURE mode by bitset to re-active the measurement, channel LED shows light blue constantly:
 - \rightarrow bitset 256 active measurement
 - 256 (Bit 8) + 0 (Bit 0) for ch1
- All channels can be RESET by bitset 16 and set to MEASURE by bitset 0 by just using one variable.

I/O Modules Q.series X A141

- LED Codes
- Channel LED
 - Light Blue constant:
 mode MEASURE
 - Light Blue flashing:
 mode RESET
 - Red constant:
 overload channel input

Click on image to download datasheet

16.03.2021 www.gantner-instruments.com

Good To Know

Download and Support Tools:

https://www.gantner-instruments.com/resources/downloads-and-support-tools/

Product datasheets:

https://www.gantner-instruments.com/resources/downloads-and-support-tools/product-datasheets/

How-To Videos:

https://www.youtube.com/user/GantnerInstruments/videos

Support Contact:

Dominik Tschofen

+43 5556 77463-209

d.tschofen@gantner-instruments.com

Find us on Social Media:

Would you like to receive more information of our products?

Subscribe to our newsletter

https://ressources.gantner-instruments.com/newsletter

Thank You!

Benedikt Heinz VP Sales

info@gantner-instruments.com

